R7 photoreceptor specification requires Notch activity

نویسندگان

  • Michael T.D. Cooper
  • Sarah J. Bray
چکیده

The eight photoreceptors in each ommatidium of the Drosophila eye are assembled by a process of recruitment [1,2]. First, the R8 cell is singled out, and then subsequent photoreceptors are added in pairs (R2 and R5, R3 and R4, R1 and R6) until the final R7 cell acquires a neuronal fate. R7 development requires the Sevenless receptor tyrosine kinase which is activated by a ligand from R8 [3]. Here, we report that the specification of R7 requires a second signal that activates Notch. We found that a Notch target gene is expressed in R7 shortly after recruitment. When Notch activity was reduced, the cell was misrouted to an R1/R6 fate. Conversely, when activated Notch was present in the R1/R6 cells, it caused them to adopt R7 fates or, occasionally, cone cell fates. In this context, Notch activity appears to act co-operatively, rather than antagonistically, with the receptor tyrosine kinase/Ras pathway in R7 photoreceptor specification. We propose two models: a ratchet model in which Notch would allow cells to remain competent to respond to sequential rounds of Ras signalling, and a combinatorial model in which Notch and Ras signalling would act together to regulate genes that determine cell fate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three Distinct Roles for Notch in Drosophila R7 Photoreceptor Specification

Receptor tyrosine kinases (RTKs) and Notch (N) proteins are different types of transmembrane receptors that transduce extracellular signals and control cell fate. Here we examine cell fate specification in the Drosophila retina and ask how N acts together with the RTKs Sevenless (Sev) and the EGF receptor (DER) to specify the R7 photoreceptor. The retina is composed of many hundred ommatidia, e...

متن کامل

Hindsight modulates Delta expression during Drosophila cone cell induction.

The induction of cone cells in the Drosophila larval eye disc by the determined R1/R6 photoreceptor precursor cells requires integration of the Delta-Notch and EGF receptor signaling pathways with the activity of the Lozenge transcription factor. Here, we demonstrate that the zinc-finger transcription factor Hindsight (HNT) is required for normal cone-cell induction. R-cells in which hindsight ...

متن کامل

Specification of cell fate in the developing eye of Drosophila.

Determination of cell fate in the developing eye of Drosophila depends on a precise sequence of cellular interactions which generate the stereotypic array of ommatidia. In the eye imaginal disc, an initially unpatterned epithelial sheath of cells, the first step in this process may be the specification of R8 photoreceptor cells at regular intervals. Genes such as Notch and scabrous, known to be...

متن کامل

R7 Photoreceptor Specification in the Developing Drosophila Eye: The Role of the Transcription Factor Deadpan

As cells proceed along their developmental pathways they make a series of sequential cell fate decisions. Each of those decisions needs to be made in a robust manner so there is no ambiguity in the state of the cell as it proceeds to the next stage. Here we examine the decision made by the Drosophila R7 precursor cell to become a photoreceptor and ask how the robustness of that decision is achi...

متن کامل

Patterning of the R7 and R8 photoreceptor cells of Drosophila: evidence for induced and default cell-fate specification.

Opsin gene expression in the R7 and R8 photoreceptor cells of the Drosophila compound eye is highly coordinated. We have found that the R8 cell specific Rh5 and Rh6 opsins are expressed in non-overlapping sets of R8 cells, in a precise pairwise fashion with Rh3 and Rh4 in the R7 cells of individual ommatidia. Removal of the R7 cells in sevenless, boss or sina mutants, disrupts Rh5 expression an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2000